Correction du DM nº1

Exercice 1

1. (a) Soit $n \ge 3$ un entier. f_n est dérivable sur $]0, +\infty[$ comme somme de fonctions dérivables sur $]0, +\infty[$. De plus, pour tout $x \in]0, +\infty[$, $f'(x) = 1 - \frac{n}{x} = \frac{x-n}{x}$.

De plus, on a

- $\lim_{n\to 0} f_n(x) = +\infty$ par somme
- $f_n(n) = n n \ln(n) = n(1 \ln n)$
- $f_n(x) = x\left(1 \frac{n\ln x}{x}\right)$. Par croissance comparée, $\lim_{x \to +\infty} \frac{n\ln x}{x} = 0$ donc par opérations de limites $\lim_{x \to +\infty} f_n(x) = +\infty$.

On en déduit le tableau suivant :

x	0	n		$+\infty$
x	-	H	+	
x-n	_	- 0	+	
$f'_n(x)$	_	- 0	+	
f_n	$+\infty$	n(1-1)	(n n)	+∞

(b) L'énoncé donne e < 3 donc pour $n \geq 3$ on a $\ln(n) > \ln(e) = 1$.

Ainsi, $f_n(n) = n(1 - \ln n) < 0$. Comme $\lim_{x \to 0} f_n(x) = \lim_{x \to +\infty} f_n(x) = +\infty$, on a $0 \in [f_n(n); \lim_{x \to 0} f_n(x)]$ et $0 \in [f_n(n); \lim_{x \to +\infty} f_n(x)]$.

De plus, f_n est strictement décroissante sur]0,n] et strictement croissante sur $[n,+\infty[$ d'après la question précédente.

Enfin, f est continue sur $]0, +\infty[$ comme somme de fonctions continues. D'après le théorème des valeurs intermédiaires, on en déduit que $f_n(x) = 0$ admet une unique solution sur]0, n[et une unique solution sur $]n, +\infty[$, donc exactement deux solutions sur $]0, +\infty[$.

- 2. On a $f_n(1) = 1 n \ln(1) = 1$, et $f_n(n) < 0$ d'après la question précédente. On a donc $f_n(1) > 0 > f_n(n)$, et comme u_n est l'unique solution de $f_n(x) = 0$ comprise entre 0 et n on a donc $1 \le u_n \le n$.
- 3. Soit $n \ge 3$. On a $f_{n+1}(u_n) = u_n (n+1)\ln(u_n) = \underbrace{u_n n\ln(u_n)}_{=0} \ln(u_n) = -\ln(u_n)$

Or $1 \le u_n$ donc $\ln(u_n) \ge 0$. Ainsi, $f_{n+1}(u_n) \le 0$.

4. Soit $n \geq 3$. On a $f_{n+1}(u_n) \leq 0 \leq f_{n+1}(u_{n+1})$ d'après la question précédente, avec $u_n \in [1, n] \subset [1, n+1]$ et $u_{n+1} \in [1, n+1]$. Or f_{n+1} est décroissante sur [1, n+1] d'après la question 1.a donc $u_n \geq u_{n+1}$.

On en déduit que (u_n) est décroissante.

5. (u_n) est décroissante d'après la question 4 et minorée par 1 d'après la question 2. On en déduit que u_n converge vers un réel ℓ .

Comme $\forall n \geq 3, u_n \geq 1$ on a $\ell \geq 1$ par passage à la limite.

6. On raisonne par l'absurde et on suppose que $\ell > 1$.

Alors, pour tout $n \in \mathbb{N}$, $u_n \ge \ell > 1$.

Or u_n vérifie $u_n = n \ln(u_n)$. On en déduit que $u_n \ge n \ln(\ell)$

Or $\ln(\ell) > 0$ car $\ell > 1$ donc $\lim_{n \to +\infty} n \ln(\ell) = +\infty$. Par comparaison, on en conclut que $\lim_{n \to +\infty} u_n = +\infty$, ce qui contredit le résultat de la question 3.

1

On en conclut que $\ell = 1$.

Exercice 2

1. Soit $n \in \mathbb{N}^*$. Pour tout $k \in [1, n]$, $k \le n$ donc $\sqrt{k} \le \sqrt{n}$ donc $\frac{1}{\sqrt{k}} \ge \frac{1}{\sqrt{n}}$.

On en déduit que
$$\sum_{k=1}^n \frac{1}{\sqrt{k}} \ge \sum_{k=1}^n \frac{1}{\sqrt{n}} = n \times \frac{1}{\sqrt{n}} = \sqrt{n}$$
.

Comme $\lim_{n\to+\infty}\sqrt{n}=+\infty$ on en déduit par comparaison que $\lim_{n\to+\infty}S_n=+\infty$.

2. Pour tout a, b > 0 on a :

$$(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b}) = \sqrt{a^2} - \sqrt{b^2} = a - b$$

d'où

$$\sqrt{a} - \sqrt{b} = \frac{a - b}{\sqrt{a} + \sqrt{b}}$$

 $\operatorname{car} \sqrt{a} + \sqrt{b} > 0.$

3. Pour tout $n \in \mathbb{N}^*$,

$$u_{n+1} - u_n = 2\sqrt{n+1} - 2\sqrt{n} - S_{n+1} + S_n$$

$$= 2\sqrt{n+1} - 2\sqrt{n} - \frac{1}{\sqrt{n+1}}$$

$$= 2\frac{n+1-n}{\sqrt{n+1} + \sqrt{n} - \frac{1}{\sqrt{n+1}}}$$

$$= \frac{2}{\sqrt{n+1} + \sqrt{n}} - \frac{1}{\sqrt{n+1}}$$

$$= \frac{2\sqrt{n+1} - \sqrt{n+1} - \sqrt{n}}{\sqrt{n+1}(\sqrt{n+1} + \sqrt{n})}$$

$$= \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+1}(\sqrt{n+1} + \sqrt{n})}$$

$$\geq 0$$

donc (u_n) est croissante.

Pour tout $n \in \mathbb{N}^*$,

$$v_{n+1} - v_n = 2\sqrt{n+2} - 2\sqrt{n+1} - S_{n+1} + S_n$$

$$= 2\frac{n+2-(n+1)}{\sqrt{n+2} + \sqrt{n+1}} - \frac{1}{\sqrt{n+1}}$$

$$= \frac{2}{\sqrt{n+2} + \sqrt{n+1}} - \frac{1}{\sqrt{n+1}}$$

$$= \frac{2\sqrt{n+1} - \sqrt{n+2} - \sqrt{n+1}}{\sqrt{n+1}(\sqrt{n+2} + \sqrt{n+1})}$$

$$= \frac{\sqrt{n+1} - \sqrt{n+2}}{\sqrt{n+2}(\sqrt{n+2} + \sqrt{n+1})}$$

$$\leq 0$$

donc (v_n) est décroissante.

- 4. Pour tout $n \in \mathbb{N}$, $v_n u_n = 2(\sqrt{n+1} \sqrt{n}) \ge 0$ car $n+1 \ge n$, donc $v_n \ge u_n$
- 5. Comme (u_n) est croissante on a : $\forall n \in \mathbb{N}, u_n \geq u_0$.

Comme (v_n) est décroissante on a : $\forall n \in \mathbb{N}, v_n \leq v_0$.

On en déduit que pour tout $n \in \mathbb{N}$:

$$u_0 \le u_n \le v_n \le v_0$$

donc (u_n) est majorée par v_0 et (v_n) est minorée par u_0 . D'après le théorème de la limite monotone on en déduit que (u_n) et (v_n) convergent.

6. pour tout
$$n \in \mathbb{N}^*$$
, $v_n - u_n = 2\sqrt{n+1} - S_n - 2\sqrt{n} + S_n = 2\frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{2}{\sqrt{n+1} + \sqrt{n}}$ donc $\lim_{n \to +\infty} (v_n - u_n) = 0$.

Si on note $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$, on en déduit que $\ell' - \ell = 0$ par somme de limites donc que $\ell = \ell'$.

7. Pour tout
$$n \in \mathbb{N}^*$$
, $S_n = 2\sqrt{n} - u_n$ donc $\frac{S_n}{n} = \frac{2\sqrt{n}}{n} - \frac{u_n}{n} = \frac{2}{\sqrt{n}} - \frac{u_n}{n}$.

Or,
$$\lim_{n \to +\infty} u_n = \ell$$
 donc $\lim_{n \to +\infty} \frac{u_n}{n} = 0$ et $\lim_{n \to +\infty} \frac{2}{\sqrt{n}} = 0$ donc par somme $\lim_{n \to +\infty} \frac{S_n}{n} = 0$.

De même,
$$\frac{S_n}{\sqrt{n}} = \frac{2\sqrt{n}}{\sqrt{n}} - \frac{u_n}{\sqrt{n}} = 2 - \frac{u_n}{\sqrt{n}}$$
 donc $\lim_{n \to +\infty} \frac{S_n}{\sqrt{n}} = 2$ par opérations.

8. On remarque que
$$S_{2n} - S_n = \sum_{k=1}^{2n} \frac{1}{\sqrt{k}} - \sum_{k=1}^{n} \frac{1}{\sqrt{k}} = \sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}} = \sum_{k'=1}^{n} \frac{1}{\sqrt{n+k'}}$$
 en posant $k' = k - n$.

On a donc
$$\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{n+k}} = \frac{1}{\sqrt{n}} (S_{2n} - S_n) = \frac{S_{2n}}{\sqrt{n}} - \frac{S_n}{\sqrt{n}} = \frac{\sqrt{2}S_{2n}}{\sqrt{2n}} - \frac{S_n}{\sqrt{n}}.$$

Or d'après la question précédente, $\lim_{n\to+\infty} \frac{S_n}{\sqrt{n}} = 2$ donc $\lim_{n\to+\infty} \frac{S_{2n}}{\sqrt{2n}} = 2$, donc

$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{n+k}} = 2\sqrt{2} - 2 = 2(\sqrt{2} - 1)$$